Search results
Results from the WOW.Com Content Network
Jazelle DBX (Direct Bytecode eXecution) is a technique that allows Java bytecode to be executed directly in the ARM architecture as a third execution state (and instruction set) alongside the existing ARM and Thumb-mode. Support for this state is signified by the "J" in the ARMv5TEJ architecture, and in ARM9EJ-S and ARM7EJ-S core names.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Announced in October 2011, [3] ARMv8-A represents a fundamental change to the ARM architecture. It adds an optional 64-bit Execution state, named "AArch64", and the associated new "A64" instruction set, in addition to a 32-bit Execution state, "AArch32", supporting the 32-bit "A32" (original 32-bit Arm) and "T32" (Thumb/Thumb-2) instruction sets.
The PXA260 is a stand-alone processor clocked at the same frequency as the PXA25x, but features a TPBGA package which is about 53% smaller than the PXA25x's PBGA package. The PXA261-PXA263 are the same as the PXA260 but have Intel StrataFlash memory stacked on top of the processor in the same package; 16 MB of 16-bit memory in the PXA261, 32 MB ...
Pages in category "ARM architecture" The following 40 pages are in this category, out of 40 total. ... ARM big.LITTLE; ARM System-on-Chip Architecture; ARMulator; B.
The ARM architecture has been the most widely adopted RISC ISA, initially intended to deliver higher-performance desktop computing, at low cost, and in a restricted thermal package, such as in the Acorn Archimedes, while featuring in the Super Computer League tables, its initial, relatively, lower power and cooling implementation was soon ...
ARM7100, ARM 7500 and ARM7500FE Acorn Risc PC 700, Apple eMate 300, Psion Series 5 (ARM7100), Acorn A7000 (ARM7500), Acorn A7000+ (ARM7500FE), Network Computer (ARM7500FE) ARM7TDMI(-S) Atmel AT91SAM7, NXP Semiconductors LPC2xxx and LH7, Actel CoreMP7
ARM's marketing material promises up to a 75% savings in power usage for some activities. [1] Most commonly, ARM big.LITTLE architectures are used to create a multi-processor system-on-chip (MPSoC). In October 2011, big.LITTLE was announced along with the Cortex-A7, which was designed to be architecturally compatible with the Cortex-A15. [2]