Ad
related to: primitive root theorem meaning in geometry formula sheet georgia
Search results
Results from the WOW.Com Content Network
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function: is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1]
Hadwiger's theorem (geometry, measure theory) Helly's theorem (convex sets) Holditch's theorem (plane geometry) John ellipsoid ; Jung's theorem ; Kepler conjecture (discrete geometry) Kirchberger's theorem (discrete geometry) Krein–Milman theorem (mathematical analysis, discrete geometry) Minkowski's theorem (geometry of numbers)
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...
In number theory, Artin's conjecture on primitive roots states that a given integer a that is neither a square number nor −1 is a primitive root modulo infinitely many primes p. The conjecture also ascribes an asymptotic density to these primes. This conjectural density equals Artin's constant or a rational multiple thereof.
The complex conjugate root theorem states that if the coefficients of a polynomial are real, then the non-real roots appear in pairs of the form (a + ib, a – ib).. It follows that the roots of a polynomial with real coefficients are mirror-symmetric with respect to the real axis.
The torsion subgroup of Z[ζ n] × is the group of roots of unity in Q(ζ n), which was described in the previous item. Cyclotomic units form an explicit finite-index subgroup of Z[ζ n] ×. The Kronecker–Weber theorem states that every finite abelian extension of Q in C is contained in Q(ζ n) for some n.
It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive nth-root of unity (/ is an example of such a root). An important relation linking cyclotomic polynomials and primitive roots of unity is
Ad
related to: primitive root theorem meaning in geometry formula sheet georgia