enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Helium-4 - Wikipedia

    en.wikipedia.org/wiki/Helium-4

    The stability of helium-4 is the reason that hydrogen is converted to helium-4, and not deuterium (hydrogen-2) or helium-3 or other heavier elements during fusion reactions in the Sun. It is also partly responsible for the alpha particle being by far the most common type of baryonic particle to be ejected from an atomic nucleus; in other words ...

  3. Big Bang nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Big_Bang_nucleosynthesis

    In physical cosmology, Big Bang nucleosynthesis (also known as primordial nucleosynthesis, and abbreviated as BBN) [1] is a model for the production of light nuclei, deuterium, 3 He, 4 He, 7 Li, between 0.01s and 200s in the lifetime of the universe. [2]

  4. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. [1]

  5. Alpher–Bethe–Gamow paper - Wikipedia

    en.wikipedia.org/wiki/Alpher–Bethe–Gamow_paper

    In his 1952 book The Creation of the Universe, Gamow explained Hans Bethe's association with the theory thus: [2] The αβγ paper with the figure referred to in the text. The results of these calculations were first announced in a letter to The Physical Review, April 1, 1948. This was signed Alpher, Bethe, and Gamow, and is often referred to ...

  6. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements.

  7. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...

  8. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.

  9. Nuclear transmutation - Wikipedia

    en.wikipedia.org/wiki/Nuclear_transmutation

    The Solar System is thought to have condensed approximately 4.6 billion years before the present, from a cloud of hydrogen and helium containing heavier elements in dust grains formed previously by a large number of such stars. These grains contained the heavier elements formed by transmutation earlier in the history of the universe.