Search results
Results from the WOW.Com Content Network
The formula for the exponential results from reducing the powers of G in the series expansion and identifying the respective series coefficients of G 2 and G with −cos(θ) and sin(θ) respectively. The second expression here for e Gθ is the same as the expression for R ( θ ) in the article containing the derivation of the generator , R ( θ ...
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix , which is involved in the closed-form solution of systems of linear differential equations .
The Lambert W function is used to solve equations in which the unknown quantity occurs both in the base and in the exponent, or both inside and outside of a logarithm. The strategy is to convert such an equation into one of the form ze z = w and then to solve for z using the W function. For example, the equation = +
When the non-homogeneous term is expressed as an exponential function, the ERF method or the undetermined coefficients method can be used to find a particular solution. If non-homogeneous terms can not be transformed to complex exponential function, then the Lagrange method of variation of parameters can be used to find solutions.
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
so the cis function can be used to extend Euler's formula to a more general complex version. [5] The function is mostly used as a convenient shorthand notation to simplify some expressions, [6] [7] [8] for example in conjunction with Fourier and Hartley transforms, [9] [10] [11] or when exponential functions shouldn't be used for some reason in ...
Inverse Distance Weighting as a sum of all weighting functions for each sample point. Each function has the value of one of the samples at its sample point and zero at every other sample point. Inverse distance weighting (IDW) is a type of deterministic method for multivariate interpolation with a known scattered set of points.
An early example, which also constituted the first demonstration of the exponential divergence of chaotic trajectories, was carried out by R. H. Miller in 1964. [10] Currently, the most commonly used numerical procedure estimates the L {\\displaystyle L} matrix based on averaging several finite time approximations of the limit defining L ...