Search results
Results from the WOW.Com Content Network
The Kröhnke method in this synthesis was crucial due to the failure of other cyclization techniques such as the Glaser coupling or Ullmann coupling. Figure 13. Another use of the Kröhnke pyridine synthesis was the generation of a number of 2,4,6-trisubstituted pyridines that were investigated as potential topoisomerase 1 inhibitors.
The Chichibabin pyridine synthesis (/ ˈ tʃ iː tʃ iː ˌ b eɪ b iː n /) is a method for synthesizing pyridine rings. The reaction involves the condensation reaction of aldehydes, ketones, α,β-Unsaturated carbonyl compounds, or any combination of the above, with ammonia. [1] It was reported by Aleksei Chichibabin in 1924.
In organic chemistry, the Bohlmann–Rahtz pyridine synthesis is a reaction that generates substituted pyridines in two steps, first a condensation reaction between an enamine and an ethynylketone to form an aminodiene intermediate, which after heat-induced E/Z isomerization undergoes a cyclodehydration to yield 2,3,6-trisubstituted pyridines.
However, because the preparation takes place above the melting point of the wax, the actual process is called emulsification, hence the name wax emulsion. In praxis, wax dispersion is used for solvent based systems. A wide range of emulsions based on different waxes and blends thereof are available, depending on the final application.
The Boger pyridine synthesis is a cycloaddition approach to the formation of pyridines named after its inventor Dale L. Boger, who first reported it in 1981. [1] The reaction is a form of inverse-electron demand Diels-Alder reaction in which an enamine reacts with a 1,2,4- triazine to form the pyridine nucleus.
Upon metabolism, 1,4-DHP based antihypertensive drugs undergo oxidation by way of cytochrome P-450 in the liver and are thus converted to their pyridine derivatives. [11] As a result, particular attention has been paid to the aromatization of 1,4-DHPs as a means to understand biological systems and so as to develop new methods of accessing ...
2-Picoline was the first pyridine compound reported to be isolated in pure form. It was isolated from coal tar in 1846 by T. Anderson. [2] This chemistry was practiced by Reilly Industries. [3] It is now mainly produced by two principal routes. One method involves the condensation of acetaldehyde and ammonia in the presence of an oxide catalyst ...
This yellow crystalline solid is a derivative of pyridine. The compound and its derivatives serve primarily as acylating agents. A few of 2-mercaptopyridine's other uses include serving as a protecting group for amines and imides as well as forming a selective reducing agent. 2-Mercaptopyridine oxidizes to [[2,2 ′-dipyridyl disulfide]]. [1]