Search results
Results from the WOW.Com Content Network
In the C programming language, operations can be performed on a bit level using bitwise operators. Bitwise operations are contrasted by byte-level operations which characterize the bitwise operators' logical counterparts, the AND, OR, NOT operators. Instead of performing on individual bits, byte-level operators perform on strings of eight bits ...
The bitwise NOT, or bitwise complement, is a unary operation that performs logical negation on each bit, forming the ones' complement of the given binary value. Bits that are 0 become 1, and those that are 1 become 0. For example: NOT 0111 (decimal 7) = 1000 (decimal 8) NOT 10101011 (decimal 171) = 01010100 (decimal 84)
For example, (a > 0 and not flag) and (a > 0 && !flag) specify the same behavior. As another example, the bitand keyword may be used to replace not only the bitwise-and operator but also the address-of operator, and it can be used to specify reference types (e.g., int bitand ref = n).
Source code that does bit manipulation makes use of the bitwise operations: AND, OR, XOR, NOT, and possibly other operations analogous to the boolean operators; there are also bit shifts and operations to count ones and zeros, find high and low one or zero, set, reset and test bits, extract and insert fields, mask and zero fields, gather and ...
Example: for +2, which is 00000010 in binary (the ~ character is the C bitwise NOT operator, so ~X means "invert all the bits in X"): ~00000010 → 11111101; 11111101 + 1 → 11111110 (−2 in two's complement)
Logical conjunction is often used for bitwise operations, where 0 corresponds to false and 1 to true: 0 AND 0 = 0, 0 AND 1 = 0, 1 AND 0 = 0, 1 AND 1 = 1. The operation can also be applied to two binary words viewed as bitstrings of equal length, by taking the bitwise AND of each pair of bits at corresponding positions. For example:
Logical operators over bit vectors (corresponding to finite Boolean algebras) are bitwise operations. But not every usage of a logical connective in computer programming has a Boolean semantic. For example, lazy evaluation is sometimes implemented for P ∧ Q and P ∨ Q , so these connectives are not commutative if either or both of the ...
This article is a stub. You can help Wikipedia by expanding it.