enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lemma (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Lemma_(mathematics)

    In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem " or an "auxiliary theorem".

  3. Johnson–Lindenstrauss lemma - Wikipedia

    en.wikipedia.org/wiki/Johnson–Lindenstrauss_lemma

    The lemma has applications in compressed sensing, manifold learning, dimensionality reduction, graph embedding, and natural language processing. Much of the data stored and manipulated on computers, including text and images, can be represented as points in a high-dimensional space (see vector space model for the case of text).

  4. Thue's lemma - Wikipedia

    en.wikipedia.org/wiki/Thue's_lemma

    The original proof of Thue's lemma is not efficient, in the sense that it does not provide any fast method for computing the solution. The extended Euclidean algorithm, allows us to provide a proof that leads to an efficient algorithm that has the same computational complexity of the Euclidean algorithm.

  5. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    The two first subsections, are proofs of the generalized version of Euclid's lemma, namely that: if n divides ab and is coprime with a then it divides b. The original Euclid's lemma follows immediately, since, if n is prime then it divides a or does not divide a in which case it is coprime with a so per the generalized version it divides b.

  6. Fatou's lemma - Wikipedia

    en.wikipedia.org/wiki/Fatou's_lemma

    In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou. Fatou's lemma can be used to prove the Fatou–Lebesgue theorem and Lebesgue's dominated convergence theorem.

  7. Schur's lemma - Wikipedia

    en.wikipedia.org/wiki/Schur's_lemma

    In mathematics, Schur's lemma [1] is an elementary but extremely useful statement in representation theory of groups and algebras.In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0.

  8. Nakayama's lemma - Wikipedia

    en.wikipedia.org/wiki/Nakayama's_lemma

    In the commutative case, the lemma is a simple consequence of a generalized form of the Cayley–Hamilton theorem, an observation made by Michael Atiyah . The special case of the noncommutative version of the lemma for right ideals appears in Nathan Jacobson ( 1945 ), and so the noncommutative Nakayama lemma is sometimes known as the Jacobson ...

  9. Isomorphism theorems - Wikipedia

    en.wikipedia.org/wiki/Isomorphism_theorems

    An application of the second isomorphism theorem identifies projective linear groups: for example, the group on the complex projective line starts with setting = ⁡ (), the group of invertible 2 × 2 complex matrices, = ⁡ (), the subgroup of determinant 1 matrices, and the normal subgroup of scalar matrices = {():}, we have = {}, where is ...