Search results
Results from the WOW.Com Content Network
The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite , aluminium 's chief ore, through the Bayer process ) in molten cryolite and electrolyzing the molten salt bath, typically in a purpose-built cell.
The cryolite ratio (NaF/AlF 3) in pure cryolite is 3, with a melting temperature of 1010 °C, and it forms a eutectic with 11% alumina at 960 °C. In industrial cells the cryolite ratio is kept between 2 and 3 to decrease its melting temperature to 940–980 °C. [5] [6]
Bust of Heroult in Thury-Harcourt. Paul (Louis-Toussaint) Héroult (10 April 1863 – 9 May 1914) was a French scientist. He was one of the inventors of the Hall-Héroult process for smelting aluminium, and developed the first successful commercial electric arc furnace. [1]
Charles Martin Hall (December 6, 1863 – December 27, 1914) was an American inventor, businessman, and chemist. He is best known for his invention in 1886 of an inexpensive method for producing aluminum , which became the first metal to attain widespread use since the prehistoric discovery of iron.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Julia Brainerd Hall (November 11, 1859 – September 4, 1926) [1] was the sister of American scientist Charles Martin Hall. She supported him in his discovery of the Hall process for extracting aluminium from its ore. [ 2 ]
Nevertheless, amateur progress lasted well into the 19th century. For example, in 1886, Charles Martin Hall co-invented the Hall-Héroult process for extracting aluminium from its oxide whilst working in a woodshed behind his family home. [6] The history of amateur chemistry ties in well with that of chemistry in general.
Heat sinks function by efficiently transferring thermal energy ("heat") from an object at high temperature to a second object at a lower temperature with a much greater heat capacity. This rapid transfer of thermal energy quickly brings the first object into thermal equilibrium with the second, lowering the temperature of the first object ...