Search results
Results from the WOW.Com Content Network
Usually, it is much cheaper to calculate [] (involving only calculation of differences, one multiplication and one division) than to calculate many more terms of the sequence . Care must be taken, however, to avoid introducing errors due to insufficient precision when calculating the differences in the numerator and denominator of the expression.
Two classical techniques for series acceleration are Euler's transformation of series [1] and Kummer's transformation of series. [2] A variety of much more rapidly convergent and special-case tools have been developed in the 20th century, including Richardson extrapolation, introduced by Lewis Fry Richardson in the early 20th century but also known and used by Katahiro Takebe in 1722; the ...
In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if
Let = = be an infinite sum whose value we wish to compute, and let = = be an infinite sum with comparable terms whose value is known. If the limit := exists, then is always also a sequence going to zero and the series given by the difference, = (), converges.
In mathematics, Anderson acceleration, also called Anderson mixing, is a method for the acceleration of the convergence rate of fixed-point iterations.Introduced by Donald G. Anderson, [1] this technique can be used to find the solution to fixed point equations () = often arising in the field of computational science.
As a vector, jerk j can be expressed as the first time derivative of acceleration, second time derivative of velocity, and third time derivative of position: = = = ()Where:
For example, to calculate the autocorrelation of the real signal sequence = (,,) (i.e. =, =, =, and = for all other values of i) by hand, we first recognize that the definition just given is the same as the "usual" multiplication, but with right shifts, where each vertical addition gives the autocorrelation for particular lag values: +
For given x, Padé approximants can be computed by Wynn's epsilon algorithm [2] and also other sequence transformations [3] from the partial sums = + + + + of the Taylor series of f, i.e., we have = ()!. f can also be a formal power series, and, hence, Padé approximants can also be applied to the summation of divergent series.