Search results
Results from the WOW.Com Content Network
The North geomagnetic pole (Ellesmere Island, Nunavut, Canada) actually represents the South pole of Earth's magnetic field, and conversely the South geomagnetic pole corresponds to the north pole of Earth's magnetic field (because opposite magnetic poles attract and the north end of a magnet, like a compass needle, points toward Earth's South ...
Original file (5,400 × 3,600 pixels, file size: 1.59 MB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Original file (5,400 × 4,500 pixels, file size: 3 MB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
A polarity chron, or in context chron, [4] is the time interval between polarity reversals of Earth's magnetic field. [5] It is the time interval represented by a magnetostratigraphic polarity unit. It represents a certain time period in geologic history where the Earth's magnetic field was in predominantly a "normal" or "reversed" position ...
Geomagnetic secular variation refers to changes in the Earth's magnetic field on time scales of about a year or more. These changes mostly reflect changes in the Earth's interior, while more rapid changes mostly originate in the ionosphere or magnetosphere. [1] The geomagnetic field changes on time scales from milliseconds to millions of years.
Earth's_magnetic_field,_schematic.png (566 × 503 pixels, file size: 96 KB, MIME type: image/png) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Archaeomagnetic dating is the study and interpretation of the signatures of the Earth's magnetic field at past times recorded in archaeological materials. These paleomagnetic signatures are fixed when ferromagnetic materials such as magnetite cool below the Curie point, freezing the magnetic moment of the material in the direction of the local magnetic field at that time.
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.