Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...
Xcas/Giac is an open-source project developed at the Joseph Fourier University of Grenoble since 2000. Written in C++, maintained by Bernard Parisse's et al. and available for Windows, Mac, Linux and many others platforms. It has a compatibility mode with Maple, Derive and MuPAD software and TI-89, TI-92 and Voyage 200 calculators.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
Divide the highest term of the remainder by the highest term of the divisor (3x ÷ x = 3). Place the result (+3) below the bar. 3x has been divided leaving no remainder, and can therefore be marked as used. The result 3 is then multiplied by the second term in the divisor −3 = −9. Determine the partial remainder by subtracting −4 − (− ...
Two algorithms are suggested: [2] [3] Division-free algorithm — performs matrix reduction to triangular form without any division operation. Fraction-free algorithm — uses division to keep the intermediate entries smaller, but due to the Sylvester's Identity the transformation is still integer-preserving (the division has zero remainder).
Three multiples can be subtracted (q 1 = 3), leaving a remainder of 21: 462 = 3 × 147 + 21. Then multiples of 21 are subtracted from 147 until the remainder is less than 21. Seven multiples can be subtracted (q 2 = 7), leaving no remainder: 147 = 7 × 21 + 0. Since the last remainder is zero, the algorithm ends with 21 as the greatest common ...