Search results
Results from the WOW.Com Content Network
The Sun's major component of magnetic field reverses direction every 11 years (so the period is about 22 years), resulting in a diminished magnitude of magnetic field near reversal time. During this dormancy, the sunspots activity is at maximum (because of the lack of magnetic braking on plasma) and, as a result, massive ejection of high energy ...
The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma carries the Sun's magnetic field into space, forming what is called the interplanetary magnetic field. [86] In an approximation known as ideal magnetohydrodynamics, plasma particles only move along magnetic field lines. As a result, the ...
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten ...
At low latitudes, the magnetic field lines are pushed inward. At high latitudes, the magnetic field lines are pushed backwards and over the polar regions. The boundary between the region dominated by the planet's magnetic field (i.e., the magnetosphere) and the plasma in the interplanetary medium is the magnetopause. The configuration ...
For premium support please call: 800-290-4726 more ways to reach us
A video simulation of Earth's magnetic field interacting with the (solar) interplanetary magnetic field (IMF) The plasma in the interplanetary medium is also responsible for the strength of the Sun's magnetic field at the orbit of the Earth being over 100 times greater than originally anticipated.
The sun’s looping magnetic field lines, which form a tangled web of structures more complex than those on Earth, are difficult to study directly. To grasp what’s going on, scientists create ...
The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field.Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar ...