Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
Venus to scale among the Inner Solar System planetary-mass objects, arranged by the order of their orbits outward from the Sun (from left: Mercury, Venus, Earth, the Moon, Mars and Ceres) Venus is one of the four terrestrial planets in the Solar System, meaning that it is a rocky body like Earth.
Venus only has an induced magnetosphere formed by the Sun's magnetic field carried by the solar wind. [46] This process can be understood as the field lines wrapping around an obstacle—Venus in this case. The induced magnetosphere of Venus has a bow shock, magnetosheath, magnetopause and magnetotail with the current sheet. [46] [47]
As of 2022, the precise location of the Solar System in the clouds is an open question in astronomy. [259] Within 10 light-years of the Sun there are relatively few stars, the closest being the triple star system Alpha Centauri, which is about 4.4 light-years away and may be in the Local Bubble's G-Cloud. [260]
move to sidebar hide. From Wikipedia, the free encyclopedia
Magnetosphere of Venus; This page was last edited on 14 June 2021, at 02:00 (UTC). Text is available under the Creative Commons Attribution-ShareAlike 4.0 ...
This is the boundary of the Solar System to interstellar space. The outermost region of the Solar System is the theorized Oort cloud, the source for long-period comets, extending to a radius of 2,000–200,000 AU. The closest star to the Solar System, Proxima Centauri, is 4.25 light-years (269,000 AU) away.
Bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma such as the solar wind. For Earth and other magnetized planets, it is the boundary at which the speed of the stellar wind abruptly drops as a result of its approach to the magnetopause .