Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers , dimensionless ratios, or dimensionless physical constants ; these topics are discussed in the article.
The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive), their transformation properties (i.e. whether the quantity is a scalar, vector, matrix or tensor), and whether the quantity is conserved.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
The term fundamental physical constant is sometimes used to refer to some universal dimensionless constants. Perhaps the best-known example is the fine-structure constant , α , which has an approximate value of 1 / 137.036 .
A quantity of dimension one is historically known as a dimensionless quantity (a term that is still commonly used); all its dimensional exponents are zero and its dimension symbol is . Such a quantity can be regarded as a derived quantity in the form of the ratio of two quantities of the same dimension.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The term "physical constant" refers to the physical quantity, and not to the numerical value within any given system of units. For example, the speed of light is defined as having the numerical value of 299 792 458 when expressed in the SI unit metres per second, and as having the numerical value of 1 when expressed in the natural units Planck ...
Pages in category "Dimensionless quantities" The following 9 pages are in this category, out of 9 total. ... Rotation (quantity) This page was last ...