Search results
Results from the WOW.Com Content Network
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
When written in base 10, all multiples of 2 will end in 0, 2, 4, 6, or 8. [3] 2 is the smallest and the only even prime number, and the first Ramanujan prime. [4] It is also the first superior highly composite number, [5] and the first colossally abundant number. [6]
For example, among the numbers 1 through 6, the numbers 2, 3, and 5 are the prime numbers, [6] as there are no other numbers that divide them evenly (without a remainder). 1 is not prime, as it is specifically excluded in the definition. 4 = 2 × 2 and 6 = 2 × 3 are both composite.
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [ 1 ] [ 2 ] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89 .
Durant’s remarkable discovery, officially called M136279841, consists of an astounding 41,024,320 digits and marks the first prime breakthrough in almost six years.
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.
Ternary: The base-three numeral system with 0, 1, and 2 as digits. Quaternary: The base-four numeral system with 0, 1, 2, and 3 as digits. Hexadecimal: Base 16, widely used by computer system designers and programmers, as it provides a more human-friendly representation of binary-coded values.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.