Search results
Results from the WOW.Com Content Network
The hypercubes are one of the few families of regular polytopes that are represented in any number of dimensions. [8] The hypercube (offset) family is one of three regular polytope families, labeled by Coxeter as γ n. The other two are the hypercube dual family, the cross-polytopes, labeled as β n, and the simplices, labeled as α n.
Additionally, a Hamiltonian path exists between two vertices u and v if and only if they have different colors in a 2-coloring of the graph. Both facts are easy to prove using the principle of induction on the dimension of the hypercube, and the construction of the hypercube graph by joining two smaller hypercubes with a matching.
In this tiling of the plane by congruent squares, the green and violet squares meet edge-to-edge as do the blue and orange squares. In geometry, Keller's conjecture is the conjecture that in any tiling of n-dimensional Euclidean space by identical hypercubes, there are two hypercubes that share an entire (n − 1)-dimensional face with each other.
The algorithm works as follows. Observe that hypercubes of dimension can be split into two hypercubes of dimension . Refer to the sub cube containing nodes with a leading 0 as the 0-sub cube and the sub cube consisting of nodes with a leading 1 as 1-sub cube.
Alternation of the n-cube yields one of two n-demicubes, as in this 3-dimensional illustration of the two tetrahedra that arise as the 3-demicubes of the 3-cube.. In geometry, demihypercubes (also called n-demicubes, n-hemicubes, and half measure polytopes) are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as hγ n for being half of the hypercube family, γ n.
A hypercube is basically a multidimensional mesh network with two nodes in each dimension. Due to similarity, such topologies are usually grouped into a k-ary d-dimensional mesh topology family, where d represents the number of dimensions and k represents the number of nodes in each dimension. [1] Different hypercubes for varying number of nodes
The two general forms of the hypercube honeycombs are the regular form with identical hypercubic facets and one semiregular, with alternating hypercube facets, like a checkerboard. A third form is generated by an expansion operation applied to the regular form, creating facets in place of all lower-dimensional elements.
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1] Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces , the hypersurface of the tesseract consists of eight cubical cells , meeting at right ...