enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(mathematics)

    Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. [2] Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That ...

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Powers of a number with absolute value less than one tend to zero: b n → 0 as n → ∞ when | b | < 1. Any power of one is always one: b n = 1 for all n for b = 1. Powers of a negative number alternate between positive and negative as n alternates between even and odd, and thus do not tend to any limit as n grows.

  4. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, n ! ! = ∏ k = 0 ⌈ n 2 ⌉ − 1 ( n − 2 k ) = n ( n − 2 ) ( n − 4 ) ⋯ . {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k ...

  5. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    That implies that product of any number of even functions is an even function as well. The product of two odd functions is an even function. The product of an even function and an odd function is an odd function. The quotient of two even functions is an even function. The quotient of two odd functions is an even function.

  6. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Use divide and conquer to compute the product of the primes whose exponents are odd; Divide all of the exponents by two (rounding down to an integer), recursively compute the product of the prime powers with these smaller exponents, and square the result; Multiply together the results of the two previous steps

  7. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    By contrast, if one is even and the other odd, they have different parity. The addition, subtraction and multiplication of even and odd integers obey simple rules. The addition or subtraction of two even numbers or of two odd numbers always produces an even number, e.g., 4 + 6 = 10 and 3 + 5 = 8.

  8. Parity of a permutation - Wikipedia

    en.wikipedia.org/wiki/Parity_of_a_permutation

    The permutation is odd if and only if this factorization contains an odd number of even-length cycles. Another method for determining whether a given permutation is even or odd is to construct the corresponding permutation matrix and compute its determinant. The value of the determinant is the same as the parity of the permutation.

  9. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    The method is based on the observation that, for any integer >, one has: = {() /, /,. If the exponent n is zero then the answer is 1. If the exponent is negative then we can reuse the previous formula by rewriting the value using a positive exponent.