Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Since matrix multiplication forms the basis for many algorithms, and many operations on matrices even have the same complexity as matrix multiplication (up to a multiplicative constant), the computational complexity of matrix multiplication appears throughout numerical linear algebra and theoretical computer science.
Such methods can be preferable when the matrix is so big that storing and manipulating it would cost a lot of memory and computing time, even with the use of methods for sparse matrices. Many iterative methods allow for a matrix-free implementation, including: the power method, the Lanczos algorithm, [2]
NumPy addresses the slowness problem partly by providing multidimensional arrays and functions and operators that operate efficiently on arrays; using these requires rewriting some code, mostly inner loops, using NumPy. Using NumPy in Python gives functionality comparable to MATLAB since they are both interpreted, [18] and they both allow the ...
Mathematically vectors are elements of a vector space over a field, and for use in physics is usually defined with = or . Concretely, if the dimension n = dim ( V ) {\displaystyle n={\text{dim}}(V)} of V {\displaystyle V} is finite, then, after making a choice of basis , we can view such vector spaces as R n {\displaystyle \mathbb {R} ^{n}} or ...
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
The straightforward multiplication of a matrix that is X × Y by a matrix that is Y × Z requires XYZ ordinary multiplications and X(Y − 1)Z ordinary additions. In this context, it is typical to use the number of ordinary multiplications as a measure of the runtime complexity. If A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × ...
This reduces the number of matrix additions and subtractions from 18 to 15. The number of matrix multiplications is still 7, and the asymptotic complexity is the same. [6] The algorithm was further optimised in 2017, [7] reducing the number of matrix additions per step to 12 while maintaining the number of matrix multiplications, and again in ...