Search results
Results from the WOW.Com Content Network
Accuracy can be improved by calibrating the dichromate solution against a blank. One major application for this reaction is in old police breathalyzer tests. When alcohol vapor makes contact with the orange dichromate-coated crystals, the color changes from Cr(VI) orange to Cr(III) green. The degree of the color change is directly related to ...
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Jones reagent is a solution prepared by dissolving chromium trioxide in aqueous sulfuric acid. To effect a Jones oxidation, this acidic mixture is then added to an acetone solution of the substrate. Alternatively, potassium dichromate can be used in place of chromium trioxide. The oxidation is very rapid and quite exothermic. Yields are ...
[notes 1] The chromate ion is the predominant species in alkaline solutions, but dichromate can become the predominant ion in acidic solutions. Further condensation reactions can occur in strongly acidic solution with the formation of trichromates, Cr 3 O 2− 10, and tetrachromates, Cr 4 O 2− 13. [2] All polyoxyanions of chromium(VI) have ...
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2) by reaction with water before it can be further oxidized to the carboxylic acid. Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde ...
A primary alcohol is an alcohol in which the hydroxy group is bonded to a primary carbon atom. It can also be defined as a molecule containing a “–CH 2 OH” group. [ 1 ] In contrast, a secondary alcohol has a formula “–CHROH” and a tertiary alcohol has a formula “–CR 2 OH”, where “R” indicates a carbon-containing group.
Another side reaction is the Tischenko reaction of aldehyde products with no α-hydrogen, but this can be prevented by use of anhydrous solvents. [4] Another general side reaction is the migration of the double bond during the oxidation of allylic alcohol substrates. [14] Oppenauer oxidation of a steroid derivative. [15]
Fischer esterification or Fischer–Speier esterification is a special type of esterification by refluxing a carboxylic acid and an alcohol in the presence of an acid catalyst. The reaction was first described by Emil Fischer and Arthur Speier in 1895. [1] Most carboxylic acids are suitable for the reaction, but the alcohol should generally be ...