Search results
Results from the WOW.Com Content Network
The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base. Euclid proved that the area of a triangle is ...
In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.
The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem. It states that the sum of the two legs squared equals the hypotenuse squared. In mathematical notation, with the respective legs labelled a and b , and the hypotenuse labelled c , it is written as a 2 + b 2 = c 2 {\displaystyle a^{2 ...
Instead of using a square on the hypotenuse and two squares on the legs, one can use any other shape that includes the hypotenuse, and two similar shapes that each include one of two legs instead of the hypotenuse (see Similar figures on the three sides). In Einstein's proof, the shape that includes the hypotenuse is the right triangle itself.
The largest possible ratio of the area of the inscribed square to the area of the triangle is 1/2, which occurs when =, = /, and the altitude of the triangle from the base of length is equal to . The smallest possible ratio of the side of one inscribed square to the side of another in the same non-obtuse triangle is 2 2 / 3 {\displaystyle 2 ...
Altitudes can be used in the computation of the area of a triangle: one-half of the product of an altitude's length and its base's length (symbol b) equals the triangle's area: A = h b /2. Thus, the longest altitude is perpendicular to the shortest side of the triangle.
The area A of any triangle is the product of its inradius (the radius of its inscribed circle) and its semiperimeter: =. The area of a triangle can also be calculated from its semiperimeter and side lengths a, b, c using Heron's formula:
The legs and hypotenuse of a right triangle satisfy the Pythagorean theorem: the sum of the areas of the squares on two legs is the area of the square on the hypotenuse, + =. If the lengths of all three sides of a right triangle are integers, the triangle is called a Pythagorean triangle and its side lengths are collectively known as a ...