Search results
Results from the WOW.Com Content Network
t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The specific impulse relates the delta-v capacity to ... α is the angle of attack; m is the vehicle's mass; ... Given the Sun's mass ratio of 333,432 times that of ...
Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.
Specific impulse (usually abbreviated I sp) is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the impulse, i.e. change in momentum, per mass of propellant. This is equivalent to "thrust per massflow".
1 6 The total impulse of a class C model rocket engine, which can be found in amateur fireworks. 10 2 20 The total impulse of a class D model rocket engine, which also can be found in amateur fireworks. 132 500: 8050: 1.07 × 10 9: Space Shuttle launched from Earth to orbit [a] 45 702: 10 834: 4.95 × 10 8: Apollo 11 launched from Earth to ...
The final x and y velocities components of the first ball can be calculated as: [5] ′ = () + + + (+) ′ = () + + + (+), where v 1 and v 2 are the scalar sizes of the two original speeds of the objects, m 1 and m 2 are their masses, θ 1 and θ 2 are their movement angles, that is, = , = (meaning ...
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]