Search results
Results from the WOW.Com Content Network
The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is
GLOP (the Google Linear Optimization Package) is Google's open-source linear programming solver, created by Google's Operations Research Team. It is written in C++ and was released to the public as part of Google's OR-Tools software suite in 2014. [1] GLOP uses a revised primal-dual simplex algorithm optimized for sparse matrices.
OR-Tools was created by Laurent Perron in 2011. [5]In 2014, Google's open source linear programming solver, GLOP, was released as part of OR-Tools. [1]The CP-SAT solver [6] bundled with OR-Tools has been consistently winning gold medals in the MiniZinc Challenge, [7] an international constraint programming competition.
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.
Column generation or delayed column generation is an efficient algorithm for solving large linear programs. The overarching idea is that many linear programs are too large to consider all the variables explicitly. The idea is thus to start by solving the considered program with only a subset of its variables.
In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions. If there exists an optimal solution, then there exists an optimal BFS.
The program operates on data entered in cells of a table. Each cell may contain either numeric or text data, or the results of formulas that automatically calculate and display a value based on the contents of other cells.