Search results
Results from the WOW.Com Content Network
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
In the equation 7x − 5 = 2, the sides of the equation are expressions. In mathematics, an expression is a written arrangement of symbols following the context-dependent, syntactic conventions of mathematical notation. Symbols can denote numbers, variables, operations, and functions. [1]
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f(x) = x 2 is a parabola whose vertex is at the origin
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
The solutions –1 and 2 of the polynomial equation x 2 – x + 2 = 0 are the points where the graph of the quadratic function y = x 2 – x + 2 cuts the x-axis. In general, an algebraic equation or polynomial equation is an equation of the form =, or = [a]
For example, the statement = is true if is either 2 or −2 and false otherwise. [26] Equations with variables can be divided into identity equations and conditional equations. Identity equations are true for all values that can be assigned to the variables, such as the equation 2 x + 5 x = 7 x {\displaystyle 2x+5x=7x} .
As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator, by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation).
Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.