Search results
Results from the WOW.Com Content Network
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
These combinations (subsets) are enumerated by the 1 digits of the set of base 2 numbers counting from 0 to 2 n − 1, where each digit position is an item from the set of n. Given 3 cards numbered 1 to 3, there are 8 distinct combinations , including the empty set:
(this associates distinct numbers to all finite sets of natural numbers); then comparison of k-combinations can be done by comparing the associated binary numbers. In the example C and C′ correspond to numbers 1001011001 2 = 601 10 and 1010001011 2 = 651 10, which again shows that C comes before C′.
Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number! Note that these are not general compositions as defined above because the numbers are restricted to 1's and 2's only. 1=1 (1) 2=1+1=2 (2) 3=1+1+1=1+2=2+1 (3)
This is a pure coincidence, as the metre was originally defined as 1 / 10 000 000 of the distance between the Earth's pole and equator along the surface at sea level, and the Earth's circumference just happens to be about 2/15 of a light-second. [39] It is also roughly equal to one foot per nanosecond (the actual number is 0.9836 ft/ns).
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
Rather, as explained under combinations, the number of n-multicombinations from a set with x elements can be seen to be the same as the number of n-combinations from a set with x + n − 1 elements. This reduces the problem to another one in the twelvefold way, and gives as result
The numerator equates to the number of ways to select the winning numbers multiplied by the number of ways to select the losing numbers. For a score of n (for example, if 3 choices match three of the 6 balls drawn, then n = 3), ( 6 n ) {\displaystyle {6 \choose n}} describes the odds of selecting n winning numbers from the 6 winning numbers.