Ads
related to: solving polynomial and rational inequalitieskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The rational univariate representation or RUR is a representation of the solutions of a zero-dimensional polynomial system over the rational numbers which has been introduced by F. Rouillier. [10] A RUR of a zero-dimensional system consists in a linear combination x 0 of the variables, called separating variable, and a system of equations [11]
For example, the polynomial equation + + = has as rational solutions x = − 1 / 2 and x = 3, and so, viewed as a Diophantine equation, it has the unique solution x = 3. In general, however, Diophantine equations are among the most difficult equations to solve.
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
The word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name". It was derived from the term binomial by replacing the Latin root bi-with the Greek poly-. That is, it means a sum of many terms (many monomials). The word polynomial was first used in the 17th century. [6]
Every Laurent polynomial can be written as a rational function while the converse is not necessarily true, i.e., the ring of Laurent polynomials is a subring of the rational functions. The rational function () = is equal to 1 for all x except 0, where there is a removable singularity. The sum, product, or quotient (excepting division by the ...
Polynomial Functions and Complex Zeros 2 1.6 Polynomial Functions and End Behavior 1 1.7 Rational Functions and End Behavior 2 1.8 Rational Functions and Zeros 1 1.9 Rational Functions and Vertical Asymptotes 1 1.10 Rational Functions and Holes 1 1.11 Equivalent Representations of Polynomial and Rational Expressions 2 1.12
where P and Q are polynomials with coefficients in some field (e.g., rational numbers, real numbers, complex numbers). An algebraic equation is univariate if it involves only one variable. On the other hand, a polynomial equation may involve several variables, in which case it is called multivariate (multiple variables, x, y, z, etc.). For example,
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.
Ads
related to: solving polynomial and rational inequalitieskutasoftware.com has been visited by 10K+ users in the past month