enow.com Web Search

  1. Ad

    related to: how to solve polynomial inequality problems

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained least squares - Wikipedia

    en.wikipedia.org/wiki/Constrained_least_squares

    In constrained least squares one solves a linear least squares problem with an additional constraint on the solution. [ 1 ] [ 2 ] This means, the unconstrained equation X β = y {\displaystyle \mathbf {X} {\boldsymbol {\beta }}=\mathbf {y} } must be fit as closely as possible (in the least squares sense) while ensuring that some other property ...

  3. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, [1] whereas mathematical optimization is in general NP-hard. [2 ...

  4. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time. For instance, the Boolean satisfiability problem is NP-complete by the Cook–Levin theorem, so any instance of any ...

  5. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If all the hard constraints are linear and some are inequalities, but the objective function is quadratic, the problem is a quadratic programming problem. It is one type of nonlinear programming. It can still be solved in polynomial time by the ellipsoid method if the objective function is convex; otherwise the problem may be NP hard.

  6. Sum-of-squares optimization - Wikipedia

    en.wikipedia.org/wiki/Sum-of-Squares_Optimization

    A sum-of-squares optimization program is an optimization problem with a linear cost function and a particular type of constraint on the decision variables. These constraints are of the form that when the decision variables are used as coefficients in certain polynomials, those polynomials should have the polynomial SOS property.

  7. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.

  8. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  9. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    The storage and computation overhead is such that the standard simplex method is a prohibitively expensive approach to solving large linear programming problems. In each simplex iteration, the only data required are the first row of the tableau, the (pivotal) column of the tableau corresponding to the entering variable and the right-hand-side.

  1. Ad

    related to: how to solve polynomial inequality problems