Search results
Results from the WOW.Com Content Network
Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number.For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10.
An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...
For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1 ...
Similarly, likelihoods are often transformed to the log scale, and the corresponding log-likelihood can be interpreted as the degree to which an event supports a statistical model. The log probability is widely used in implementations of computations with probability, and is studied as a concept in its own right in some applications of ...
Because logarithms in different bases differ from each other only by a constant factor, algorithms that run in O(log 2 n) time can also be said to run in, say, O(log 13 n) time. The base of the logarithm in expressions such as O(log n) or O(n log n) is therefore not important and can be omitted.
Since the common logarithm of a power of 10 is exactly the exponent, the characteristic is an integer number, which makes the common logarithm exceptionally useful in dealing with decimal numbers. For positive numbers less than 1, the characteristic makes the resulting logarithm negative, as required. [38] See common logarithm for details on ...
Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In arithmetic modulo an integer m , the more commonly used term is index : One can write k = ind b a (mod m ) (read "the index of a to the base b modulo m ") for b k ≡ a (mod m ) if k is a primitive ...