Search results
Results from the WOW.Com Content Network
Statistical hypothesis testing is considered a mature area within statistics, [25] but a limited amount of development continues. An academic study states that the cookbook method of teaching introductory statistics leaves no time for history, philosophy or controversy. Hypothesis testing has been taught as received unified method.
The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or ...
Testing a hypothesis suggested by the data can very easily result in false positives (type I errors). If one looks long enough and in enough different places, eventually data can be found to support any hypothesis. Yet, these positive data do not by themselves constitute evidence that the hypothesis is correct. The negative test data that were ...
Scientific inquiry includes creating a testable hypothesis through inductive reasoning, testing it through experiments and statistical analysis, and adjusting or discarding the hypothesis based on the results. [1] [2] [3] Although procedures vary between fields, the underlying process is often similar.
Auxiliary hypotheses that are independently testable: "An auxiliary hypothesis ought to be testable independently of the particular problem it is introduced to solve, independently of the theory it is designed to save." (For example, the evidence for the existence of Neptune is independent of the anomalies in Uranus's orbit.)
The consistent application by statisticians of Neyman and Pearson's convention of representing "the hypothesis to be tested" (or "the hypothesis to be nullified") with the expression H 0 has led to circumstances where many understand the term "the null hypothesis" as meaning "the nil hypothesis" – a statement that the results in question have ...
In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false negatives that reject the alternative hypothesis when it is true). [a]
Hypothesis testing remains a subject of controversy for some users, but the most widely accepted alternative method, confidence intervals, is based on the same mathematical principles. Due to the historical development of testing, there is no single authoritative source that fully encompasses the hybrid theory as it is commonly practiced in ...