Search results
Results from the WOW.Com Content Network
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other.
A universe set is an absorbing element of binary union . The empty set ∅ {\displaystyle \varnothing } is an absorbing element of binary intersection ∩ {\displaystyle \cap } and binary Cartesian product × , {\displaystyle \times ,} and it is also a left absorbing element of set subtraction ∖ : {\displaystyle \,\setminus :}
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The union-closed sets conjecture, also known as Frankl’s conjecture, is an open problem in combinatorics posed by Péter Frankl in 1979. A family of sets is said to be union-closed if the union of any two sets from the family belongs to the family.
Venn diagram showing the union of sets A and B as everything not in white. In combinatorics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as
One may define the operations of the algebra of sets: union(S,T): returns the union of sets S and T. intersection(S,T): returns the intersection of sets S and T. difference(S,T): returns the difference of sets S and T. subset(S,T): a predicate that tests whether the set S is a subset of set T.
The algebra of sets is an interpretation or model of Boolean algebra, with union, intersection, set complement, U, and {} interpreting Boolean sum, product, complement, 1, and 0, respectively. The properties below are stated without proof , but can be derived from a small number of properties taken as axioms .
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.