Search results
Results from the WOW.Com Content Network
Azuma's inequality; Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount
A biological system is a complex network which connects several biologically relevant entities. Biological organization spans several scales and are determined based different structures depending on what the system is. [1] Examples of biological systems at the macro scale are populations of organisms.
Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 . Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities ...
The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation.
In mathematical analysis, the Minkowski inequality establishes that the L p spaces are normed vector spaces.Let be a measure space, let < and let and be elements of (). Then + is in (), and we have the triangle inequality
Supposing , we have that + + +. Define = (,,) and = (+, +, +). By the rearrangement inequality, the dot product of the two sequences is maximized when the terms are arranged to be both increasing or both decreasing.