enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data reduction - Wikipedia

    en.wikipedia.org/wiki/Data_reduction

    Data reduction is the transformation of numerical or alphabetical digital information derived empirically or experimentally into a corrected, ordered, and simplified form. . The purpose of data reduction can be two-fold: reduce the number of data records by eliminating invalid data or produce summary data and statistics at different aggregation levels for various applications

  3. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension.

  4. Data compression - Wikipedia

    en.wikipedia.org/wiki/Data_compression

    In information theory, data compression, source coding, [1] or bit-rate reduction is the process of encoding information using fewer bits than the original representation. [2] Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in ...

  5. Instance selection - Wikipedia

    en.wikipedia.org/wiki/Instance_selection

    Instance selection (or dataset reduction, or dataset condensation) is an important data pre-processing step that can be applied in many machine learning (or data mining) tasks. [1] Approaches for instance selection can be applied for reducing the original dataset to a manageable volume, leading to a reduction of the computational resources that ...

  6. Topological data analysis - Wikipedia

    en.wikipedia.org/wiki/Topological_data_analysis

    In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging.

  7. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  8. Multifactor dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Multifactor_dimensionality...

    Multifactor dimensionality reduction (MDR) is a statistical approach, also used in machine learning automatic approaches, [1] for detecting and characterizing combinations of attributes or independent variables that interact to influence a dependent or class variable.

  9. Curse of dimensionality - Wikipedia

    en.wikipedia.org/wiki/Curse_of_dimensionality

    In data mining, the curse of dimensionality refers to a data set with too many features. Consider the first table, which depicts 200 individuals and 2000 genes (features) with a 1 or 0 denoting whether or not they have a genetic mutation in that gene.