enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros. For functions from the real numbers to real numbers or from the complex numbers to the complex numbers, these are expressed either as ...

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    We can rephrase that as finding the zero of f(x) = cos(x) − x 3. We have f ′ (x) = −sin(x) − 3x 2. Since cos(x) ≤ 1 for all x and x 3 > 1 for x > 1, we know that our solution lies between 0 and 1. A starting value of 0 will lead to an undefined result which illustrates the importance of using a starting point close to the solution.

  4. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    Every real polynomial of odd degree has an odd number of real roots (counting multiplicities); likewise, a real polynomial of even degree must have an even number of real roots. Consequently, real odd polynomials must have at least one real root (because the smallest odd whole number is 1), whereas even polynomials may have none.

  5. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    We can also define the multiplicity of the zeroes and poles of a meromorphic function. If we have a meromorphic function =, take the Taylor expansions of g and h about a point z 0, and find the first non-zero term in each (denote the order of the terms m and n respectively) then if m = n, then the point has non-zero value.

  6. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding the real roots of a polynomial with real coefficients is a problem that has received much attention since the beginning of 19th century, and is still an active domain of research. Most root-finding algorithms can find some real roots, but cannot certify having found all the roots.

  7. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity). Another use of Rouché's theorem is to prove the open mapping theorem for analytic functions. We refer to the article for the proof.

  8. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0. A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer.

  9. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference between the root count and the sign change count is always even. In particular, when the number of sign changes is zero or one, then there are exactly zero or one positive roots.