Search results
Results from the WOW.Com Content Network
A gamma-ray laser, or graser, is a hypothetical device that would produce coherent gamma rays, just as an ordinary laser produces coherent rays of visible light. [1] Potential applications for gamma-ray lasers include medical imaging, spacecraft propulsion, and cancer treatment.
Plans call for the glass mirrors and 1064 nm lasers to be replaced by even larger 160 kg silicon test masses, cooled to 123 K (a temperature achievable with liquid nitrogen), and a change to a longer laser wavelength in the 1500–2200 nm range at which silicon is transparent. (Many documents assume a wavelength of 1550 nm, but this is not final.)
If a sufficient intensity is reached, a laser beam incident on a substrate (such as fused silica [1]) will cause the substrate to ionize and the resulting plasma will reflect the incoming beam with the qualities of an ordinary mirror. A single plasma mirror can be used only one time, as during the interaction the beam ionizes the substrate and ...
While many scientists remain optimistic that a breakthrough is near, an operational gamma-ray laser is yet to be realized. [84] Some of the early studies were directed toward short pulses of neutrons exciting the upper isomer state in a solid so the gamma-ray transition could benefit from the line-narrowing of Mössbauer effect.
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
Optical glass refers to a quality of glass suitable for the manufacture of optical systems such as optical lenses, prisms or mirrors.Unlike window glass or crystal, whose formula is adapted to the desired aesthetic effect, optical glass contains additives designed to modify certain optical or mechanical properties of the glass: refractive index, dispersion, transmittance, thermal expansion and ...
Laser cutting works by directing the output of a high-power laser most commonly through optics. The laser optics and CNC (computer numerical control) are used to direct the laser beam to the material. A commercial laser for cutting materials uses a motion control system to follow a CNC or G-code of the pattern to be cut onto the material.
The beamline includes X-ray optical devices which control the bandwidth, photon flux, beam dimensions, focus, and collimation of the rays. The optical devices include slits, attenuators, crystal monochromators, and mirrors. The mirrors may be bent into curves or toroidal shapes to focus the beam. A high photon flux in a small area is the most ...