Search results
Results from the WOW.Com Content Network
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... This category represents all rational numbers, ...
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
In the case of the rational numbers this means that any number has two irreducible fractions, related by a change of sign of both numerator and denominator; this ambiguity can be removed by requiring the denominator to be positive. In the case of rational functions the denominator could similarly be required to be a monic polynomial. [8]
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
Acrobat Reader Touch is a free PDF document viewer developed and released on December 11, 2012, by Adobe Systems for the Windows Touch user interface. FormsCentral was a web form filling server for users with Windows, macOS, or a web browser and an Adobe ID only.
It is the ring of integers in the number field () of Gaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, [] is a Euclidean domain. The ring of integers of an algebraic number field is the unique maximal order in the field. It is always a Dedekind domain. [4]
In his Essai sur la théorie des nombres (1798), Adrien-Marie Legendre derives a necessary and sufficient condition for a rational number to be a convergent of the simple continued fraction of a given real number. [4] A consequence of this criterion, often called Legendre's theorem within the study of continued fractions, is as follows: [5 ...