Search results
Results from the WOW.Com Content Network
The standard playing card ranks {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} form a 13-element set. The card suits {♠, ♥, ♦, ♣} form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, which correspond to all 52 possible playing cards.
The Cartesian product of two edges is a cycle on four vertices: K 2 K 2 = C 4. The Cartesian product of K 2 and a path graph is a ladder graph. The Cartesian product of two path graphs is a grid graph. The Cartesian product of n edges is a hypercube: =.
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
Toggle Cartesian products ⨯ of finitely many sets subsection. ... 7.5.2 Binary ⨯ distributes over ... and binary Cartesian product ...
Cylinder sets are often used to define a measure, using the Kolmogorov extension theorem; for example, the measure of a cylinder set of length m might be given by 1/m or by 1/2 m. Cylinder sets may be used to define a metric on the space: for example, one says that two strings are ε-close if a fraction 1−ε of the letters in the strings match.
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar -valued scalar triple product and, less often, the vector -valued vector triple product .
2. In geometry and linear algebra, denotes the cross product. 3. In set theory and category theory, denotes the Cartesian product and the direct product. See also × in § Set theory. · 1. Denotes multiplication and is read as times; for example, 3 ⋅ 2. 2. In geometry and linear algebra, denotes the dot product. 3.