enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  3. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Any vector field can be written in terms of the unit vectors as: = ^ + ^ + ^ = ^ + ^ + ^ The cylindrical unit vectors are related to the Cartesian unit vectors by: [^ ^ ^] = [⁡ ⁡ ⁡ ⁡] [^ ^ ^] Note: the matrix is an orthogonal matrix , that is, its inverse is simply its transpose .

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A vector field is a vector-valued function that, generally, has a domain of the same dimension (as a manifold) as its codomain, Conservative vector field, a vector field that is the gradient of a scalar potential field; Hamiltonian vector field, a vector field defined for any energy function or Hamiltonian

  5. Field (physics) - Wikipedia

    en.wikipedia.org/wiki/Field_(physics)

    A field can be classified as a scalar field, a vector field, a spinor field or a tensor field according to whether the represented physical quantity is a scalar, a vector, a spinor, or a tensor, respectively. A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().

  7. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...

  8. Field line - Wikipedia

    en.wikipedia.org/wiki/Field_line

    A vector field defines a direction and magnitude at each point in space. A field line is an integral curve for that vector field and may be constructed by starting at a point and tracing a line through space that follows the direction of the vector field, by making the field line tangent to the field vector at each point.

  9. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    The next simplest example is the field F itself. Vector addition is just field addition, and scalar multiplication is just field multiplication. This property can be used to prove that a field is a vector space. Any non-zero element of F serves as a basis so F is a 1-dimensional vector space over itself.