Search results
Results from the WOW.Com Content Network
Fastor is a high performance tensor (fixed multi-dimensional array) library for modern C++. GNU Scientific Library [6] GNU Project C, C++ 1996 2.7.1 / 11.2021 Free GPL: General purpose numerical analysis library. Includes some support for linear algebra. IMSL Numerical Libraries: Rogue Wave Software: C, Java, C#, Fortran, Python 1970 many ...
Xerus [52] is a C++ tensor algebra library for tensors of arbitrary dimensions and tensor decomposition into general tensor networks (focusing on matrix product states). It offers Einstein notation like syntax and optimizes the contraction order of any network of tensors at runtime so that dimensions need not be fixed at compile-time.
De facto standard for matrix/tensor operations in Python. Pandas, a library for data manipulation and analysis. SageMath is a large mathematical software application which integrates the work of nearly 100 free software projects and supports linear algebra, combinatorics, numerical mathematics, calculus, and more. [12]
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions or, more efficiently, by removing the dimensions attribute of a matrix A with dim(A) <- NULL.
Concretely, in the case where the vector space has an inner product, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K ...
In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one type of generalization of the matrix singular value decomposition. It has applications in computer vision, computer graphics, machine learning, scientific computing, and signal ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
Tensor-CURT decomposition [6] is a generalization of matrix-CUR decomposition. Formally, a CURT tensor approximation of a tensor A is three matrices and a (core-)tensor C, R, T and U such that C is made from columns of A, R is made from rows of A, T is made from tubes of A and that the product U(C,R,T) (where the ,,-th entry of it is ′, ′, ′ ′, ′, ′, ′, ′, ′) closely ...