enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Not every parallelogram is a rhombus, though any parallelogram with perpendicular diagonals (the second property) is a rhombus. In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite. Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus.

  3. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A square is a quadrilateral with four equal sides and four right angles; that is, it is a quadrilateral that is both a rhombus and a rectangle [1] A square is a quadrilateral where the diagonals are equal, and are the perpendicular bisectors of each other. That is, it is a rhombus with equal diagonals. [2] A square is a quadrilateral with ...

  4. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    A parallelogram has rotational symmetry of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of reflectional symmetry then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a square.

  6. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    A rhombus is an orthodiagonal quadrilateral with two pairs of parallel sides (that is, an orthodiagonal quadrilateral that is also a parallelogram). A square is a limiting case of both a kite and a rhombus. Orthodiagonal quadrilaterals that are also equidiagonal quadrilaterals are called midsquare quadrilaterals. [2]

  7. Genus–differentia definition - Wikipedia

    en.wikipedia.org/wiki/Genus–differentia_definition

    a square: (a quadrilateral that has bounding sides which all have the same length), and that has interior angles which are all right angles. leading to the following abstraction: a rhombus: a quadrilateral that has bounding sides which all have the same length. Then, the definition of a square may be recast with that abstraction as its genus:

  8. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Any non-self-crossing quadrilateral that has an axis of symmetry must be either a kite, with a diagonal axis of symmetry; or an isosceles trapezoid, with an axis of symmetry through the midpoints of two sides. These include as special cases the rhombus and the rectangle respectively, and the square, which is a special case of both. [1]

  9. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    This article uses the inclusive definition and considers parallelograms as special cases of a trapezoid. This is also advocated in the taxonomy of quadrilaterals. Under the inclusive definition, all parallelograms (including rhombuses, squares and non-square rectangles) are trapezoids. Rectangles have mirror symmetry on mid-edges; rhombuses ...