Search results
Results from the WOW.Com Content Network
For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.
The cut surface or vertex figure is thus a spherical polygon marked on this sphere. One advantage of this method is that the shape of the vertex figure is fixed (up to the scale of the sphere), whereas the method of intersecting with a plane can produce different shapes depending on the angle of the plane.
In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices.
Such shapes include polygons, which may be concave, shapes with holes, and collections of such shapes (i.e. the regions need not be connected). The corresponding problem that the theorem solves is known as the fold-and-cut problem, which asks what shapes can be obtained by the so-called fold-and-cut method. A particular instance of the problem ...
The truncation involves cutting away corners; to preserve symmetry, the cut is in a plane perpendicular to the line joining a corner to the center of the polyhedron and is the same for all corners, and an example can be found in truncated icosahedron constructed by cutting off all the icosahedron's vertices, having the same symmetry as the ...
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices. For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}. If m is 2, for example, then every second point is
Geometrically, the Borromean rings may be realized by linked ellipses, or (using the vertices of a regular icosahedron) by linked golden rectangles. It is impossible to realize them using circles in three-dimensional space, but it has been conjectured that they may be realized by copies of any non-circular simple closed curve in space.