Search results
Results from the WOW.Com Content Network
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
Vapor pressure [a] or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate.
The Clausius–Clapeyron equation [8]: 509 applies to vaporization of liquids where vapor follows ideal gas law using the ideal gas constant and liquid volume is neglected as being much smaller than vapor volume V. It is often used to calculate vapor pressure of a liquid. [9]
The vapour pressure above the curved interface is then higher than that for the planar interface. This picture provides a simple conceptual basis for the Kelvin equation. The change in vapor pressure can be attributed to changes in the Laplace pressure. When the Laplace pressure rises in a droplet, the droplet tends to evaporate more easily.
In that situation, the reduced cubic equation of state yields 3 solutions. The largest and the lowest solution are the gas and liquid reduced volume. In this situation, the Maxwell construction is sometimes used to model the pressure as a function of molar volume.
A variant of this single set approach is using a special parameter set fitted for the examined temperature range. The second solution is switching to another vapor pressure equation with more than three parameters. Commonly used are simple extensions of the Antoine equation (see below) and the equations of DIPPR or Wagner. [2] [3]
where P 1, P 2 are the vapor pressures at temperatures T 1, T 2 respectively, ΔH vap is the enthalpy of vaporization, and R is the universal gas constant. The rate of evaporation in an open system is related to the vapor pressure found in a closed system. If a liquid is heated, when the vapor pressure reaches the ambient pressure the liquid ...
The GPSA Engineering Data Book [3] recommends the following k values for vertical drums with horizontal mesh pads (at the denoted operating pressures): At a gauge pressure of 0 bar: 0.107 m/s; At a gauge pressure of 7 bar: 0.107 m/s; At a gauge pressure of 21 bar: 0.101 m/s; At a gauge pressure of 42 bar: 0.092 m/s