Search results
Results from the WOW.Com Content Network
In graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing. Outerplanar graphs may be characterized (analogously to Wagner's theorem for planar graphs) by the two forbidden minors K 4 and K 2,3, or by their Colin de Verdière graph invariants. They have Hamiltonian ...
Proof without words that a hypercube graph is non-planar using Kuratowski's or Wagner's theorems and finding either K 5 (top) or K 3,3 (bottom) subgraphs. If is a graph that contains a subgraph that is a subdivision of or ,, then is known as a Kuratowski subgraph of . [1]
V is the symmetry group of this cross: flipping it horizontally (a) or vertically (b) or both (ab) leaves it unchanged.A quarter-turn changes it. In two dimensions, the Klein four-group is the symmetry group of a rhombus and of rectangles that are not squares, the four elements being the identity, the vertical reflection, the horizontal reflection, and a 180° rotation.
Wagner's theorem states that a graph is planar if and only if it has neither K 5 nor K 3,3 as a minor. In other words, the set {K 5, K 3,3} is an obstruction set for the set of all planar graphs, and in fact the unique minimal obstruction set. A similar theorem states that K 4 and K 2,3 are the forbidden minors for the set of outerplanar graphs.
A planar graph cannot contain K 3,3 as a minor; an outerplanar graph cannot contain K 3,2 as a minor (These are not sufficient conditions for planarity and outerplanarity, but necessary). Conversely, every nonplanar graph contains either K 3,3 or the complete graph K 5 as a minor; this is Wagner's theorem. [9] Every complete bipartite graph.
Baker's technique covers a planar graph with a constant number of -outerplanar graphs and uses their low treewidth in order to quickly approximate several hard graph optimization problems. [ 2 ] In connection with the GNRS conjecture on metric embedding of minor-closed graph families, the k {\displaystyle k} -outerplanar graphs are one of the ...
Proof without words that a hypercube graph is non-planar using Kuratowski's or Wagner's theorems and finding either K 5 (top) or K 3,3 (bottom) subgraphs. Wagner published both theorems in 1937, [1] subsequent to the 1930 publication of Kuratowski's theorem, [2] according to which a graph is planar if and only if it does not contain as a subgraph a subdivision of one of the same two forbidden ...
A molecule may be nonpolar either when there is an equal sharing of electrons between the two atoms of a diatomic molecule or because of the symmetrical arrangement of polar bonds in a more complex molecule. For example, boron trifluoride (BF 3) has a trigonal planar arrangement of three polar bonds at 120°. This results in no overall dipole ...