Search results
Results from the WOW.Com Content Network
Logical connectives can be used to link zero or more statements, so one can speak about n-ary logical connectives. The boolean constants True and False can be thought of as zero-ary operators. Negation is a unary connective, and so on.
Term logic treated All, Some and No in the 4th century BC, in an account also touching on the alethic modalities. In 1827, George Bentham published his Outline of a New System of Logic: With a Critical Examination of Dr. Whately's Elements of Logic, describing the principle of the quantifier, but the book was not widely circulated. [12]
The scope of a logical connective occurring within a formula is the smallest well-formed formula that contains the connective in question. [2] [6] [8] The connective with the largest scope in a formula is called its dominant connective, [9] [10] main connective, [6] [8] [7] main operator, [2] major connective, [4] or principal connective; [4] a connective within the scope of another connective ...
a set of operator symbols, called connectives, [18] [1] [50] logical connectives, [1] logical operators, [1] truth-functional connectives, [1] truth-functors, [37] or propositional connectives. [ 2 ] A well-formed formula is any atomic formula, or any formula that can be built up from atomic formulas by means of operator symbols according to ...
In logic, a logical constant or constant symbol of a language is a symbol that has the same semantic value under every interpretation of . Two important types of logical constants are logical connectives and quantifiers .
The connectives are usually taken to be logical constants, meaning that the meaning of the connectives is always the same, independent of what interpretations are given to the other symbols in a formula. This is how we define logical connectives in propositional logic: ¬Φ is True iff Φ is False. (Φ ∧ Ψ) is True iff Φ is True and Ψ is True.
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...
Formulas in logic are typically built up recursively from some propositional variables, some number of logical connectives, and some logical quantifiers.Propositional variables are the atomic formulas of propositional logic, and are often denoted using capital roman letters such as , and .