Search results
Results from the WOW.Com Content Network
Term logic treated All, Some and No in the 4th century BC, in an account also touching on the alethic modalities. In 1827, George Bentham published his Outline of a New System of Logic: With a Critical Examination of Dr. Whately's Elements of Logic, describing the principle of the quantifier, but the book was not widely circulated. [12]
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
In semantics and mathematical logic, a quantifier is a way that an argument claims that an object with a certain property exists or that no object with a certain property exists. Not to be confused with Category:Quantification (science) .
Some of the details can be found in the article Lindström quantifier. Conditional quantifiers are meant to capture certain properties concerning conditional reasoning at an abstract level. Generally, it is intended to clarify the role of conditionals in a first-order language as they relate to other connectives, such as conjunction or ...
First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables.
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃ x " or " ∃( x ...
In symbolic logic, the universal quantifier symbol (a turned "A" in a sans-serif font, Unicode U+2200) is used to indicate universal quantification. It was first used in this way by Gerhard Gentzen in 1935, by analogy with Giuseppe Peano's (turned E) notation for existential quantification and the later use of Peano's notation by Bertrand Russell.
In computational complexity theory, the language TQBF is a formal language consisting of the true quantified Boolean formulas.A (fully) quantified Boolean formula is a formula in quantified propositional logic (also known as Second-order propositional logic) where every variable is quantified (or bound), using either existential or universal quantifiers, at the beginning of the sentence.