enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .

  3. Saturn - Wikipedia

    en.wikipedia.org/wiki/Saturn

    Saturn's atmosphere exhibits a banded pattern similar to Jupiter's, but Saturn's bands are much fainter and are much wider near the equator. The nomenclature used to describe these bands is the same as on Jupiter. Saturn's finer cloud patterns were not observed until the flybys of the Voyager spacecraft during the 1980s.

  4. Synchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Synchronous_orbit

    T = rotational period of the body = Radius of orbit. By this formula one can find the stationary orbit of an object in relation to a given body. Orbital speed (how fast a satellite is moving through space) is calculated by multiplying the angular speed of the satellite by the orbital radius. [3]

  5. Synodic day - Wikipedia

    en.wikipedia.org/wiki/Synodic_day

    A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day , which is one complete rotation in relation to distant stars [ 1 ] and is the basis of sidereal time.

  6. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).

  7. Jupiter, Saturn merging in night sky, closest in centuries - AOL

    www.aol.com/news/jupiter-saturn-merging-night...

    Jupiter and Saturn will merge in the night sky Monday, appearing closer to one another than they have since Galileo’s time in the 17th century. Astronomers say so-called conjunctions between the ...

  8. Sun-synchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Sun-synchronous_orbit

    An orbit will be Sun-synchronous when the precession rate ρ = ⁠ dΩ / dt ⁠ equals the mean motion of the Earth about the Sun n E, which is 360° per sidereal year (1.990 968 71 × 10 −7 rad/s), so we must set n E = ⁠ ΔΩ E / T E ⁠ = ρ = ⁠ ΔΩ / T ⁠, where T E is the Earth orbital period, while T is the period of the spacecraft ...

  9. Moons of Saturn - Wikipedia

    en.wikipedia.org/wiki/Moons_of_Saturn

    Many of them, such as Pan and Daphnis, orbit within Saturn's ring system and have orbital periods only slightly longer than the planet's rotation period. [46] The innermost moons and most regular satellites all have mean orbital inclinations ranging from less than a degree to about 1.5 degrees (except Iapetus , which has an inclination of 7.57 ...