enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Smallest-circle problem - Wikipedia

    en.wikipedia.org/wiki/Smallest-circle_problem

    The recursion terminates when P is empty, and a solution can be found from the points in R: for 0 or 1 points the solution is trivial, for 2 points the minimal circle has its center at the midpoint between the two points, and for 3 points the circle is the circumcircle of the triangle described by the points.

  3. Subdivision surface - Wikipedia

    en.wikipedia.org/wiki/Subdivision_surface

    The process starts with a base level polygonal mesh. A refinement scheme is then applied to this mesh. This process takes that mesh and subdivides it, creating new vertices and new faces. The positions of the new vertices in the mesh are computed based on the positions of nearby old vertices, edges, and/or faces.

  4. Mesh generation - Wikipedia

    en.wikipedia.org/wiki/Mesh_generation

    Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain.

  5. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.

  6. Types of mesh - Wikipedia

    en.wikipedia.org/wiki/Types_of_mesh

    A cuboid, a topological cube, has 8 vertices, 12 edges, and 6 quadrilateral faces, making it a type of hexahedron. In the context of meshes, a cuboid is often called a hexahedron, hex, or brick. [1] For the same cell amount, the accuracy of solutions in hexahedral meshes is the highest.

  7. Polygonal modeling - Wikipedia

    en.wikipedia.org/wiki/Polygonal_modeling

    Subdivide - Introduce new vertices into a mesh by subdividing each face. In the case of, for instance, Catmull-Clark, subdivision can also have a smoothing effect on the meshes it is applied to. Convex Hull - Generate a convex mesh which minimally encloses a given mesh; Cut - Create a hole in a mesh surface; Stitch - Close a hole in a mesh surface

  8. Truncation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Truncation_(geometry)

    Types of truncation on a square, {4}, showing red original edges, and new truncated edges in cyan. A uniform truncated square is a regular octagon, t{4}={8}. A complete truncated square becomes a new square, with a diagonal orientation. Vertices are sequenced around counterclockwise, 1-4, with truncated pairs of vertices as a and b.

  9. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    There are 2 regular complex apeirogons, sharing the vertices of the hexagonal tiling. Regular complex apeirogons have vertices and edges, where edges can contain 2 or more vertices. Regular apeirogons p{q}r are constrained by: 1/p + 2/q + 1/r = 1. Edges have p vertices, and vertex figures are r-gonal. [5]