Search results
Results from the WOW.Com Content Network
In physics, a vector is additionally distinguished by how its coordinates change when one measures the same vector with respect to a different background coordinate system. The transformation properties of vectors distinguish a vector as a geometrically distinct entity from a simple list of scalars, or from a covector .
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms .
In mathematics and physics, the concept of a vector is an important fundamental and encompasses a variety of distinct but related notions. Wikimedia Commons has media related to Vectors . Subcategories
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.
If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.
Let be a vector space over a field. [6] For instance, suppose is or , the standard n-dimensional space of column vectors over the real or complex numbers, respectively.In this case, the idea of representation theory is to do abstract algebra concretely by using matrices of real or complex numbers.
In physics, a force is considered a vector quantity. This means that it not only has a size (or magnitude) but also a direction in which it acts. We typically represent force with the symbol F in boldface, or sometimes, we place an arrow over the symbol to indicate its vector nature, like this: .
In physics, the dot product takes two vectors and returns a scalar quantity. It is also known as the "scalar product". The dot product of two vectors can be defined as the product of the magnitudes of the two vectors and the cosine of the angle between the two vectors.