enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    The Lagrangian and Eulerian specifications are named after Joseph-Louis Lagrange and Leonhard Euler, respectively. These specifications are reflected in computational fluid dynamics , where "Eulerian" simulations employ a fixed mesh while "Lagrangian" ones (such as meshfree simulations ) feature simulation nodes that may move following the ...

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    According to the fundamental lemma of calculus of variations, the part of the integrand in parentheses is zero, i.e. ′ = which is called the Euler–Lagrange equation. The left hand side of this equation is called the functional derivative of J [ f ] {\displaystyle J[f]} and is denoted δ J {\displaystyle \delta J} or δ f ( x ...

  4. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/EulerLagrange_equation

    The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  5. Lagrangian system - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_system

    A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold J r Y of Y.. A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O ∗ ∞ (Y) of exterior forms on jet manifolds of Y → X.

  6. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    If the Lagrangian L does not depend on some coordinate q i, then it follows from the Euler–Lagrange equations that the corresponding generalized momentum will be a conserved quantity, because the time derivative is zero implying the momentum is a constant of the motion;

  7. Functional derivative - Wikipedia

    en.wikipedia.org/wiki/Functional_derivative

    A formula to determine functional derivatives for a common class of functionals can be written as the integral of a function and its derivatives. This is a generalization of the Euler–Lagrange equation : indeed, the functional derivative was introduced in physics within the derivation of the Lagrange equation of the second kind from the ...

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  9. LSZ reduction formula - Wikipedia

    en.wikipedia.org/wiki/LSZ_reduction_formula

    Download QR code; Print/export ... reduction formula is a method to calculate S-matrix elements ... using Euler–Lagrange equations, ...