Search results
Results from the WOW.Com Content Network
The adjoint may also be called the Hermitian conjugate or simply the Hermitian [1] after Charles Hermite. It is often denoted by A † in fields like physics , especially when used in conjunction with bra–ket notation in quantum mechanics .
The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]
The conjugate transpose "adjoint" matrix should not be confused with the adjugate, (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.
Deformed Hermitian Yang–Mills equation; Hermitian adjoint; Hermitian connection, the unique connection on a Hermitian manifold that satisfies specific conditions; Hermitian form, a specific sesquilinear form; Hermitian function, a complex function whose complex conjugate is equal to the original function with the variable changed in sign
The Hermitian conjugate of the Hermitian conjugate of anything (linear operators, bras, kets, numbers) is itself—i.e., (†) † =. Given any combination of complex numbers, bras, kets, inner products, outer products, and/or linear operators, written in bra–ket notation, its Hermitian conjugate can be computed by reversing the order of the ...
In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.
Several of these share a similar formalism: if A is adjoint to B, then there is typically some formula of the type (Ax, y) = (x, By). Specifically, adjoint or adjunction may mean: Adjoint of a linear map, also called its transpose in case of matrices; Hermitian adjoint (adjoint of a linear operator) in functional analysis
In mathematics and, more often, physics, a dagger denotes the Hermitian adjoint of an operator; for example, A † denotes the adjoint of A. This notation is sometimes replaced with an asterisk, especially in mathematics. An operator is said to be Hermitian if A † = A. [37]