Search results
Results from the WOW.Com Content Network
The complete list of all free trees on 2, 3, and 4 labeled vertices: = tree with 2 vertices, = trees with 3 vertices, and = trees with 4 vertices.. In combinatorics, an area of mathematics, graph enumeration describes a class of combinatorial enumeration problems in which one must count undirected or directed graphs of certain types, typically as a function of the number of vertices of the ...
A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k -vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ ( G ) is defined as the largest k such ...
[3] Another corollary of Menger's theorem is that in 2-connected graphs, any two edges lie on a common cycle. The proof, however, does not generalize to the corresponding statement for k edges in a k-connected graph; rather, Menger's theorem can be used to show that in a k-connected graph, given any 2 edges and k-2 vertices, there is a cycle ...
If a planar graph is 3-connected, it has a unique planar embedding up to the choice of which face is the outer face and of orientation of the embedding: the faces of the embedding are exactly the nonseparating cycles of the graph. However, for a planar graph (with labeled vertices and edges) that is 2-connected but not 3-connected, there may be ...
Non-trivially 3-connected those that can be split by 3 edge cuts into sub-graphs with at least two vertices remaining in each part; Cyclically 4-connected—all those not 1-connected, not 2-connected, and not non-trivially 3-connected; This declares the numbers 3 and 4 in the fourth column of the tables below.
Every maximal planar graph on more than 3 vertices is at least 3-connected. [6] If a maximal planar graph has v vertices with v > 2, then it has precisely 3v – 6 edges and 2v – 4 faces. Apollonian networks are the maximal planar graphs formed by repeatedly splitting triangular faces into triples of smaller triangles.
The polyhedral graph formed as the Schlegel diagram of a regular dodecahedron. In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs.
A Y-Δ transform, an operation that replaces a degree-three vertex in a graph by a triangle connecting its neighbors, is sufficient (together with the removal of parallel edges) to reduce any Apollonian network to a single triangle, and more generally the planar graphs that can be reduced to a single edge by Y-Δ transforms, removal of parallel ...