Ads
related to: factoring cubic trinomials practice questions
Search results
Results from the WOW.Com Content Network
Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields , a fundamental step is a factorization of a polynomial over a finite field .
In practice, algorithms have been designed only for polynomials with coefficients in a finite field, in the field of rationals or in a finitely generated field extension of one of them. All factorization algorithms, including the case of multivariate polynomials over the rational numbers, reduce the problem to this case; see polynomial ...
In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property, a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials.
For example, finding a substitution = + + for a cubic equation of degree =, = + + + such that substituting = yields a new equation ′ = + ′ + ′ + ′ such that ′ =, ′ =, or both. More generally, it may be defined conveniently by means of field theory , as the transformation on minimal polynomials implied by a different choice of ...
The non-real factors come in pairs which when multiplied give quadratic polynomials with real coefficients. Since every polynomial with complex coefficients can be factored into 1st-degree factors (that is one way of stating the fundamental theorem of algebra ), it follows that every polynomial with real coefficients can be factored into ...
Similarly, the discriminant of a cubic polynomial is zero if and only if the polynomial has a multiple root. In the case of a cubic with real coefficients, the discriminant is positive if the polynomial has three distinct real roots, and negative if it has one real root and two distinct complex conjugate roots.
Moreover, the univariate polynomial h(x 0) of the RUR may be factorized, and this gives a RUR for every irreducible factor. This provides the prime decomposition of the given ideal (that is the primary decomposition of the radical of the ideal). In practice, this provides an output with much smaller coefficients, especially in the case of ...
For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
Ads
related to: factoring cubic trinomials practice questions